神经网络如此强大?
|
这是一个多项式,因此可以显式计算其值。 n越大,近似值越接近真实值。 逼近理论的中心问题是为这些问题提供数学框架。 如果您有任何函数g(x)以及从计算方面更易于处理的函数族,那么您的目标就是找到一个与g足够接近的"简单"函数。 本质上,近似理论搜索三个核心问题的答案。
别担心这些听起来是否有点抽象,因为接下来我们将研究神经网络的特殊情况。 神经网络作为函数逼近器
因此,让我们重申这个问题。 我们有一个函数g(x),它描述数据和观测值之间的关系。 这不是确切已知的,仅对于某些值 1989年的一个著名结果被称为通用逼近定理,该结论指出,只要激活函数像S形函数且被逼近的函数是连续的,具有单个隐藏层的神经网络就可以根据需要精确地对其进行逼近。 (或使用机器学习术语进行学习。) 如果确切的定理似乎很困难,请不要担心,我将详细解释整个过程。 (实际上,我故意跳过了稠密之类的概念,以使说明更清晰,尽管不够精确。)
步骤1。 假设要学习的函数是g(x),它是连续的。 让我们固定一个小的ε并在函数周围绘制一个ε宽的条纹。 ε越小,结果越好。 但是,有几个警告。 例如,该定理没有说出N,也就是隐藏层中神经元的数量。 对于较小的ε,它可能非常大,从计算角度来看这是不利的。 我们希望尽快计算预测,而计算100亿项之和绝对不好玩。 第二个问题是,即使该定理保证了一个良好的逼近函数的存在,也没有告诉我们如何找到它。 尽管这可能令人惊讶,但这在数学中是非常典型的。 我们有非常强大的工具来推断某些对象的存在,而又不能显式构造它们。 (有一所称为建构主义的数学学校,它拒绝纯粹的存在性证明,例如通用逼近定理的原始证明。但是,这个问题根深蒂固。如果不接受非构造性证明,我们甚至无法谈论 无限集上的函数。)
但是,最大的问题是,在实践中,我们永远不会完全了解底层功能,而只会知道所观察到的内容: (编辑:平顶山站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |

